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Abstract 

Machine Learning (ML) is getting more and more present as 

an alternative computing approach for the numerical analysis 

of electromagnetic fields. On the other hand, specialised 

methods like Finite Elements (FEM) [1] or Boundary Elements 

(BEM) [2] proved to be quite effective in terms of accuracy 

and computational burden, yet requiring ad-hoc modelling for 

each different problem. In this contribution we propose a 

comparison among different ML approaches with some 

classical approaches in terms of accuracy, time to obtain the 

result, and generalization capabilities. 

1 Introduction 

The use of ML techniques in computational electromagnetism 

allows a very prompt evaluation of ElectroMagnetic (EM) 

fields when running an optimization process for some device 

or solving an inverse problem [3]. In both cases, repeated 

evaluations of similar configurations are required, and 

promptness is a major issue. The performance in terms of 

promptness is achieved at the expenses of a time-consuming 

training phase, when the ML model is adjusted to fit the 

required input-output data. In this phase also the time required 

to gather the training examples should be included, although 

Physically-Informed Neural Networks (PINN) [4] can 

significantly reduce this effort, as they train by minimizing the 

physical equations residual rather than the discrepancy with 

available data. A second issue related to use of ML for EM 

fields representation is about the accuracy, which is not 

generally high, especially when configurations not included in 

the training data set are referenced. Finally, the generalization 

capability of the model is a further issue to consider in the 

design of the approach. As a matter of fact, a trade-off between 

model complexity and its generalization capabilities must be 

considered, since including design parameters like topology or 

excitation among the inputs of the ML model required more 

complex models and larger training sets. Classical approaches 

to EM fields numerical computation have been studied since a 

long ago, examples being FEM, BEM, or Meshless 

approaches. The cited methods all fall under the more general 

class of “Moment-Method” based approaches [5]. They have 

been highly tailored for each physical problem, and the 

capabilities of each have been thoroughly assessed in terms of 

computational effort, accuracy and generalization capabilities. 

We propose here a comparison between some ML approaches 

and FEM method. The different resolution methods will be 

compared on a few benchmark cases, highlighting different 

aspects of the typical EM devices study problems. In this digest 

we first present with some detail the different ML approaches 

and FEM method considered in the comparison, then we 

present the benchmark problems and the Key Performance 

Indicators (KPI) used to compare the methods, and finally, in 

this digest, some preliminary results. 

2 Comparison of ML and Classical approaches 

The aim of this work is to compare ML approaches and 

classical ones on the basis of the following three KPIs: 

• TEM: time to gather an estimate of the EM field – 

differentiating between training and computing times,  

• A: accuracy in the representation of the response – 

assessed with respect to a reference method,  

• G: generalization capabilities – assessed as the A on 

previously unforeseen cases.  

The KPI depend on the complexity of the models, both for ML 

and classical ones, and their behaviours with respect to model 

complexity will also be investigated. In this digest, the 

reference method used to compute A is the FEM, while TEM 

and G are not reported here. Such a comparison is a quite 

ambitious, so we will limit ourselves to compare just a subset 

of the available methodologies. Specifically, we will consider 

the following ML approaches: Deep Neural Networks (DNNs) 

with equation residual minimization (so-called PINN), a  

Hybrid Boundary Element – Physics Informed Neural Network 

(BEM-PINN) method, recently proposed by the authors [6]. 

For classical approaches, we will consider the FEM method 

and Meshless method [7]. Different approaches are 

characterised by different sets of parameters: in classical 

methods they are the number of basis elements (corresponding 

to the discretization level), while in PINN they are both the 

number of layers/neurons and the number of grid points. The 

selection of the best PINN architecture can be considered 

equivalent to the selection of the proper mesh; in addition, 

training of the PINN is a process that is time consuming, and 

not comparable to any equivalent  in classical methods.  For 

this reason the first step is to compare the accuracy and the 

CPU time for a single run, ignoring the training time. We will 
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use hyperbolic tangent (tanh) activation functions because 

these provide smooth, differentiable outputs, possess the 

symmetry with respect to zero, and finally allow achieving 

faster convergence. For the FEM, we will use second order  

functions on a simplicial mesh, while for the Meshless method 

Gaussian Basis functions will be used. 

3 The benchmark problems 

In order to test the different approaches on a “basic” problem, 

the benchmark will be the computation of the electric potential  

inside a L-shaped domain. Dirichlet boundary conditions are 

imposed on {(𝑥 = 0; 0 < 𝑦 < 1) ⋃  (0 < 𝑥 < 1; 𝑦 = 0 )}   
where 𝜑 = 1, and on  {(𝑥 = 0.5; 0.5 < 𝑦 < 1) ⋃  (0.5 < 𝑥 <
1; 𝑦 = 0.5 )}   where 𝜑 = 0. Neumann BC are imposed on the 

remaining part of the boundary {(0 < 𝑥 < 0.5; 𝑦 = 1) ⋃  (𝑥 =
1; 0 < 𝑦 < 0.5 )}. No charge is present in the domain in this 

case. Fig. 1 shows a representation of the domain, together with 

the reference solution, obtained using a FEM approach, and a 

mesh with 7500 degrees of freedom.  In order to compute the 

KPI for the PINN method, a regular grid has been created by 

considering 100 points on the long side {0 < 𝑥 < 0.5, 0 < 𝑦 <
1} and 50 on the short side of the L shaped domain 

{0.5 < 𝑥 < 1, 0 < 𝑦 < 0.5}. As for the BEM – PINN method, 

the same grid has been maintained in the subdomain where the 

PINN is used (left rectangle), while a 50 elements 

segmentation on the remaining parts of the boundary has been 

considered. 

 

Figure 1. 2D potential map in an L-shaped domain, calculated using FEM. 

4 Preliminary Results 

To compare the DA for the PINN and BEM-PINN approaches, 

the 2D potential over the L-shaped domain obtained using 

BEM-PINN and PINN is subtracted from the FEM result. The 

two maps of DA are shown in Figure 2. As shown in the figure, 

the maximum deviation of the PINN approach from FEM 

occurs at the corner, where the accuracy of PINN decreases and 

where, in general all numerical methods fail to produce 

accurate results. However, the BEM-PINN method 

demonstrates higher accuracy, particularly at the corners. The 

deviation between BEM-PINN and FEM is lower across the 

entire domain, indicating the superior accuracy of this 

approach compared to PINN.  

5 Conclusions 

This study aims to highlighting the strengths and limitations of 

both ML and classical numerical methods for solving 

electromagnetic problems. While classical approaches like 

FEM offer high accuracy, they face significant computational 

demands as the mesh grid density increases. On the other hand, 

ML approaches, particularly PINN and BEM-PINN, provide 

mesh-free solutions with faster computational times once 

trained. Just a first preliminary assessment is shown in this 

digest, allowing to state that BEM-PINN outperforms PINN in 

terms of accuracy, especially in regions with complex 

geometries such as corners. 

 

Figure 2. A for the BEM-PINN approach (left plot), and the PINN 

approach (right plot). 
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